Skip to content

omega_plots

Display of OMEGAdata cubes.

omega_plots.check_list_data_omega(omega_list, data_list, disp=True)

Check the compatibility between data_list and the list of OMEGA/MEx observations. Raise ValueError if uncompatibility.

Parameters:

Name Type Description Default
omega_list array of OMEGAdata

List of OMEGA/MEx observations.

required
data_list 3D array

List of high-level map associated to the observations of omega_list.

required
disp bool

Enable the display of the result of the test.

True
Source code in omegapy/omega_plots.py
def check_list_data_omega(omega_list, data_list, disp=True):
    """Check the compatibility between `data_list` and the list of OMEGA/MEx observations.
    Raise `ValueError` if uncompatibility.

    Parameters
    ----------
    omega_list : array of OMEGAdata
        List of OMEGA/MEx observations.
    data_list : 3D array
        List of high-level map associated to the observations of `omega_list`.
    disp : bool, default True
        Enable the display of the result of the test.
    """
    if len(omega_list) != len(data_list):
        raise ValueError("omega_list and data_list must have the same size")
    else:
        for i in range(len(omega_list)):
            if omega_list[i].lat.shape != data_list[i].shape:
                raise ValueError("The shapes of items {0} of omega_list and data_list does not match.".format(i))
    if disp:
        print("\033[01;32mCompatibility between omega_list and data_list OK\033[0m")

omega_plots.check_list_mask_omega(omega_list, mask_list, disp=True)

Check the compatibility between mask_list and the list of OMEGA/MEx observations. Raise ValueError if uncompatibility.

Parameters:

Name Type Description Default
omega_list array of OMEGAdata

List of OMEGA/MEx observations.

required
mask_list 3D array

List of masks to remove the corrupted pixels of each OMEGA/MEx observation.

required
disp bool

Enable the display of the result of the test.

True
Source code in omegapy/omega_plots.py
def check_list_mask_omega(omega_list, mask_list, disp=True):
    """Check the compatibility between `mask_list` and the list of OMEGA/MEx observations.
    Raise `ValueError` if uncompatibility.

    Parameters
    ----------
    omega_list : array of OMEGAdata
        List of OMEGA/MEx observations.
    mask_list : 3D array
        List of masks to remove the corrupted pixels of each OMEGA/MEx observation.
    disp : bool, default True
        Enable the display of the result of the test.
    """
    if len(omega_list) != len(mask_list):
        raise ValueError("omega_list and mask_list must have the same size")
    else:
        for i in range(len(omega_list)):
            if omega_list[i].lat.shape != mask_list[i].shape:
                raise ValueError("The shapes of items {0} of omega_list and mask_list does not match.".format(i))
    if disp:
        print("\033[01;32mCompatibility between omega_list and mask_list OK\033[0m")

omega_plots.load_map_omega_list(filename)

Load and return the result of omega_plots.show_omega_list_v2() previously saved with save_map_omega_list().

Parameters:

Name Type Description Default
filename str

The file path.

required

Returns:

Name Type Description
data 2D array

The omega reflectance at lam, sampled on the new lat/lon grid.

mask 2D array

The array indicating where the new grid has been filled by the OMEGA data.

grid_lat 2D array

The new latitude grid.

grid_lon 2D array

The new longitude grid.

mask_obs 2D array of str

The array indicating which observations have been used to fill each grid position.

infos dict

The informations about the computation of the data.

Source code in omegapy/omega_plots.py
def load_map_omega_list(filename):
    """Load and return the result of `omega_plots.show_omega_list_v2()` previously saved
    with `save_map_omega_list()`.

    Parameters
    ----------
    filename : str
        The file path.

    Returns
    -------
    data : 2D array
        The omega reflectance at lam, sampled on the new lat/lon grid.
    mask : 2D array
        The array indicating where the new grid has been filled by the OMEGA data.
    grid_lat : 2D array
        The new latitude grid.
    grid_lon : 2D array
        The new longitude grid.
    mask_obs : 2D array of str
        The array indicating which observations have been used to fill each grid position.
    infos : dict
        The informations about the computation of the data.
    """
    loaded_dict = uf.load_pickle(filename, True)
    data, mask, grid_lat, grid_lon, mask_obs, infos = loaded_dict.values()
    return data, mask, grid_lat, grid_lon, mask_obs, infos

omega_plots.plot_psp(sp1_id, *args, sp2_id=(None, None), Nfig=None, sp_dict=picked_spectra, **kwargs)

Plot previously picked spectra from interactive plots.

If two spectra id are given, the ration sp1/sp2 is showed.

Parameters:

Name Type Description Default
sp1_id tuple of int (nfig, sp_nb)

nfig : The figure number of the selected spectra.
sp_nb : The number of the spectra in this figure (starting at 1).

required
*args

Optional arguments for the plt.plot() function.

()
sp2_id tuple of int (nfig, sp_nb)

nfig : The figure number of the selected spectra.
sp_nb : The number of the spectra in this figure (starting at 1).

(None, None)
Nfig int or str or None

The target figure ID.

None
sp_dict dict

The dictionary containing the picked spectra from interactive figures.
Default is the current one.

picked_spectra
**kwargs

Optional arguments for the plt.plot() function.

{}
Source code in omegapy/omega_plots.py
def plot_psp(sp1_id, *args, sp2_id=(None, None), Nfig=None, sp_dict=picked_spectra, **kwargs):
    """Plot previously picked spectra from interactive plots.

    If two spectra id are given, the ration sp1/sp2 is showed.

    Parameters
    ----------
    sp1_id : tuple of int (nfig, sp_nb)
        `nfig` : The figure number of the selected spectra.</br>
        `sp_nb` : The number of the spectra in this figure (starting at 1).
    *args : 
        Optional arguments for the `plt.plot()` function.
    sp2_id : tuple of int (nfig, sp_nb), default (None, None)
        `nfig` : The figure number of the selected spectra.</br>
        `sp_nb` : The number of the spectra in this figure (starting at 1).
    Nfig : int or str or None, default None
        The target figure ID.
    sp_dict : dict, default picked_spectra
        The dictionary containing the picked spectra from interactive figures.</br>
        Default is the current one.
    **kwargs:
        Optional arguments for the `plt.plot()` function.
    """
    nfig1, n_sp1 = sp1_id
    nfig2, n_sp2 = sp2_id
    if (n_sp2 is None) or (nfig2 is None):
        lam = sp_dict[nfig1][0]
        sp = sp_dict[nfig1][n_sp1]
        ylabel = 'Reflectance'
    else:
        lam1, lam2 = sp_dict[nfig1][0], sp_dict[nfig2][0]
        sp_1, sp_2 = sp_dict[nfig1][n_sp1], sp_dict[nfig2][n_sp2]
        lam = od.shared_lam([lam1, lam2])
        mask_lam1 = uf.where_closer_array(lam, lam1)
        mask_lam2 = uf.where_closer_array(lam, lam2)
        sp = sp_1[mask_lam1] / sp_2[mask_lam2]
        ylabel = 'Ratioed reflectance'
    plt.figure(Nfig)
    plt.plot(lam, sp, *args, **kwargs)
    plt.xlabel('λ [µm]')
    plt.ylabel(ylabel)
    plt.tight_layout()

omega_plots.point_in_poly4(x0, y0, X4, Y4)

Test if a point of coordinates (x0, y0) is within a polygon with 4 sides.

Parameters:

Name Type Description Default
x0 float or array - like

The x-coordinate of the point to test.

required
y0 float or array - like

The y-coordinate of the point to test.

required
X4 4-tuple of floats

The x-coordinates of the polygon corners.

required
Y4 4-tuple of floats

The y-coordinates of the polygon corners.

required

Returns:

Name Type Description
testin bool or array-like of bool

True if (x0, y0) is within the polygon.

Source code in omegapy/omega_plots.py
def point_in_poly4(x0, y0, X4, Y4):
    """Test if a point of coordinates (x0, y0) is within a polygon with 4 sides.

    Parameters
    ----------
    x0 : float or array-like
        The x-coordinate of the point to test.
    y0 : float or array-like
        The y-coordinate of the point to test.
    X4 : 4-tuple of floats
        The x-coordinates of the polygon corners.
    Y4 : 4-tuple of floats
        The y-coordinates of the polygon corners.

    Returns
    -------
    testin : bool or array-like of bool
        `True` if `(x0, y0)` is within the polygon.
    """
    # Extraction
    Xa, Xb, Xc, Xd = deepcopy(X4)
    Ya, Yb, Yc, Yd = deepcopy(Y4)
    # re-order to have
    #  D--C
    #  |  |
    #  A--B
    while ((Xa > Xb) or (Xd > Xc) or (Ya > Yd) or (Yb > Yc)):
        if Xa > Xb:
            Xa, Xb = Xb, Xa
            Ya, Yb = Yb, Ya
        if Xd > Xc:
            Xd, Xc = Xc, Xd
            Yd, Yc = Yc, Yd
        if Ya > Yd:
            Ya, Yd = Yd, Ya
            Xa, Xd = Xd, Xa
        if Yb > Yc:
            Yb, Yc = Yc, Yb
            Xb, Xc = Xc, Xb
    # Internal test functions
    def f_xmin(y):
        return Xa + ((Xd - Xa) / (Yd - Ya)) * (y - Ya)
    def f_xmax(y):
        return Xb + ((Xc - Xb) / (Yc - Yb)) * (y - Yb)
    def f_ymin(x):
        return Ya + ((Yb - Ya) / (Xb - Xa)) * (x - Xa)
    def f_ymax(x):
        return Yd + ((Yc - Yd) / (Xc - Xd)) * (x - Xd)
    # Test if point in poly
    testin = (
        ( x0 >= f_xmin(y0) ) &
        ( x0 <= f_xmax(y0) ) &
        ( y0 >= f_ymin(x0) ) &
        ( y0 <= f_ymax(x0) )
        )
    return testin

omega_plots.proj_grid(omega, data, lat_min=-90, lat_max=90, lon_min=0, lon_max=360, pas_lat=0.1, pas_lon=0.1, negative_values=False)

Sample the data from the input OMEGA/MEx observation on a given lat/lon grid.

Parameters:

Name Type Description Default
omega OMEGAdata

The OMEGA/MEx observation

required
data 2D array

The initial array of values associated to the OMEGAdata observation.
e.g.: Refelectance at selected wvl, spectra, or derived data such as IBD map.

required
lat_min float

The minimal latitude of the grid.

-90
lat_max float

The maximum latitude of the grid.

90
lon_min float

The minimal longitude of the grid.

0
lon_max float

The maximal longitude of the grid.

360
pas_lat float

The latitude intervals of the grid.

0.1
pas_lon float

The longitude intervals of the grid.

0.1
negative_values bool

Set if the negative values are considered as relevant data or not.

False

Returns:

Name Type Description
grid_data 2D array

The data values, sampled on the new lat/lon grid.
dim = (Nlon x Nlat)

mask 2D array

The array indicating where the new grid has been filled by the OMEGA data.

grid_lat 2D array

The new latitude grid.

grid_lon 2D array

The new longitude grid.

Source code in omegapy/omega_plots.py
def proj_grid(omega, data, lat_min=-90, lat_max=90, lon_min=0, lon_max=360,
              pas_lat=0.1, pas_lon=0.1, negative_values=False):
    """Sample the data from the input OMEGA/MEx observation on a given lat/lon grid.

    Parameters
    ----------
    omega : OMEGAdata
        The OMEGA/MEx observation
    data : 2D array
        The initial array of values associated to the OMEGAdata observation.</br>
        *e.g.: Refelectance at selected wvl, spectra, or derived data such as IBD map.*
    lat_min : float, default -90
        The minimal latitude of the grid.
    lat_max : float, default 90
        The maximum latitude of the grid.
    lon_min : float, default 0
        The minimal longitude of the grid.
    lon_max : float, default 360
        The maximal longitude of the grid.
    pas_lat : float, default 0.1
        The latitude intervals of the grid.
    pas_lon : float, default 0.1
        The longitude intervals of the grid.
    negative_values : bool, default False
        Set if the negative values are considered as relevant data or not.

    Returns
    -------
    grid_data : 2D array
        The data values, sampled on the new lat/lon grid.</br>
        `dim = (Nlon x Nlat)`
    mask : 2D array
        The array indicating where the new grid has been filled by the OMEGA data.
    grid_lat : 2D array
        The new latitude grid.
    grid_lon : 2D array
        The new longitude grid.
    """
    # Initialisation
    lat_array = np.arange(lat_min, lat_max+pas_lat, pas_lat)
    lon_array = np.arange(lon_min, lon_max+pas_lon, pas_lon)
    Nlon, Nlat = len(lon_array)-1, len(lat_array)-1
    grid_lat, grid_lon = np.meshgrid(lat_array, lon_array)
    grid_data = np.zeros((Nlon, Nlat))
    mask = np.zeros((Nlon, Nlat))
    lat2 = np.floor(np.clip(omega.lat, lat_min, lat_max-0.1*pas_lat) /pas_lat) * pas_lat
    lon2 = np.floor(np.clip(omega.lon, lon_min, lon_max-0.1*pas_lon) /pas_lon) * pas_lon
    nx, ny = lat2.shape
    # Sampling on the new grid
    for j in range(ny):
        for i in range(nx):
            longi, lati = lon2[i,j], lat2[i,j]
            i_lon = int(longi/pas_lon - lon_min/pas_lon)
            j_lat = int(lati/pas_lat - lat_min/pas_lat)
            data_tmp = data[i,j]
            # if (not np.isnan(data_tmp)) & (data_tmp > 0):   # Filtrage régions sans données
            if negative_values:
                if (not np.isnan(data_tmp)) & (not np.isinf(data_tmp)):   # Filtrage régions sans données
                    grid_data[i_lon,j_lat] += data_tmp
                    mask[i_lon,j_lat] += 1
            else:   # negative values = No data
                if (not np.isnan(data_tmp)) & (data_tmp > 0) & (not np.isinf(data_tmp)):   # Filtrage régions sans données
                    grid_data[i_lon,j_lat] += data_tmp
                    mask[i_lon,j_lat] += 1
    grid_data[grid_data==0] = np.nan
    grid_data2 = grid_data / mask       # Normalisation
    mask2 = np.clip(mask, 0, 1)
    return grid_data2, mask2, grid_lat, grid_lon

omega_plots.proj_grid2(omega, data, lat_min=-90, lat_max=90, lon_min=0, lon_max=360, pas_lat=0.1, pas_lon=0.1, negative_values=False)

Sample the data from the input OMEGA/MEx observation on a given lat/lon grid.

Parameters:

Name Type Description Default
omega OMEGAdata

The OMEGA/MEx observation

required
data 2D array

The initial array of values associated to the OMEGAdata observation.
e.g.: Refelectance at selected wvl, spectra, or derived data such as IBD map.

required
lat_min float

The minimal latitude of the grid.

-90
lat_max float

The maximum latitude of the grid.

90
lon_min float

The minimal longitude of the grid.

0
lon_max float

The maximal longitude of the grid.

360
pas_lat float

The latitude intervals of the grid.

0.1
pas_lon float

The longitude intervals of the grid.

0.1
negative_values bool

Set if the negative values are considered as relevant data or not.

False

Returns:

Name Type Description
grid_data 2D array

The data values, sampled on the new lat/lon grid.
dim = (Nlon x Nlat)

mask 2D array

The array indicating where the new grid has been filled by the OMEGA data.

grid_lat 2D array

The new latitude grid.

grid_lon 2D array

The new longitude grid.

Source code in omegapy/omega_plots.py
def proj_grid2(omega, data, lat_min=-90, lat_max=90, lon_min=0, lon_max=360,
              pas_lat=0.1, pas_lon=0.1, negative_values=False):
    """Sample the data from the input OMEGA/MEx observation on a given lat/lon grid.

    Parameters
    ----------
    omega : OMEGAdata
        The OMEGA/MEx observation
    data : 2D array
        The initial array of values associated to the OMEGAdata observation.</br>
        *e.g.: Refelectance at selected wvl, spectra, or derived data such as IBD map.*
    lat_min : float, default -90
        The minimal latitude of the grid.
    lat_max : float, default 90
        The maximum latitude of the grid.
    lon_min : float, default 0
        The minimal longitude of the grid.
    lon_max : float, default 360
        The maximal longitude of the grid.
    pas_lat : float, default 0.1
        The latitude intervals of the grid.
    pas_lon : float, default 0.1
        The longitude intervals of the grid.
    negative_values : bool, default False
        Set if the negative values are considered as relevant data or not.

    Returns
    -------
    grid_data : 2D array
        The data values, sampled on the new lat/lon grid.</br>
        `dim = (Nlon x Nlat)`
    mask : 2D array
        The array indicating where the new grid has been filled by the OMEGA data.
    grid_lat : 2D array
        The new latitude grid.
    grid_lon : 2D array
        The new longitude grid.
    """
    # Initialisation
    #-- OMEGA grids
    Ωlat = deepcopy(omega.lat)
    Ωlon = deepcopy(omega.lon)
    Ωgrid_lat = deepcopy(omega.lat_grid)
    Ωgrid_lon = deepcopy(omega.lon_grid)
    #-- Test negative longitudes if close to 0°/360°
    mask_lat = (np.abs(omega.lat) < 85)
    if (omega.lon[mask_lat] < 10).any() and (omega.lon[mask_lat] > 350).any() and (lon_min >= 0) and (lon_max > 180):
        negatives_longitudes = True
    else:
        negatives_longitudes = False
    #-- Test polar case
    if (omega.lat > 85).any():
        polarN = True
        polarS = False
    elif (omega.lat < -85).any():
        polarN = False
        polarS = True
    else:
        polarN = False
        polarS = False
    #-- Lon/Lat grids
    lat_array = np.arange(lat_min, lat_max+pas_lat, pas_lat)
    lon_array = np.arange(lon_min, lon_max+pas_lon, pas_lon)
    if negatives_longitudes:
        n_neg_lon = np.sum(lon_array > 180) # nb of negative longitudes (>180°)
        i_lon180 = np.where(lon_array > 180)[0][0] # 1st index of lon > 180°
        lon_array_nl = deepcopy(lon_array)        # new longitude grid [-180°, 180°]
        lon_array_nl[:n_neg_lon] = lon_array[i_lon180-1:-1] - 360
        lon_array_nl[n_neg_lon:] = lon_array[:i_lon180]
        lon_array = deepcopy(lon_array_nl)
        Ωgrid_lon[Ωgrid_lon > 180] -= 360
        Ωlon[Ωlon > 180] -= 360
    Nlon, Nlat = len(lon_array)-1, len(lat_array)-1
    grid_lat, grid_lon = np.meshgrid(lat_array, lon_array)
    grid_data = np.zeros((Nlon, Nlat))
    mask = np.zeros((Nlon, Nlat))
    #-- Center grids for projection
    if np.min(lat_array) < np.min(Ωgrid_lat):
        i_lat_min = np.where(lat_array < np.min(Ωgrid_lat))[0][-1]
    else:
        i_lat_min = 0
    if np.max(lat_array) > np.max(Ωgrid_lat):
        i_lat_max = np.where(lat_array > np.max(Ωgrid_lat))[0][0]
    else:
        i_lat_max = Nlat
    if np.min(lon_array) < np.min(Ωgrid_lon):
        i_lon_min = np.where(lon_array < np.min(Ωgrid_lon))[0][-1]
    else:
        i_lon_min = 0
    if np.max(lon_array) > np.max(Ωgrid_lon):
        i_lon_max = np.where(lon_array > np.max(Ωgrid_lon))[0][0]
    else:
        i_lon_max = Nlon
    if polarN or polarS:
        i_lon_min, i_lon_max = 0, Nlon
    grid_latC = deepcopy(grid_lat)[i_lon_min:i_lon_max, i_lat_min:i_lat_max] + pas_lat/2
    grid_lonC = deepcopy(grid_lon)[i_lon_min:i_lon_max, i_lat_min:i_lat_max] + pas_lon/2
    # Sampling on the new grid
    nx, ny = data.shape
    for j in tqdm(range(ny)):
        for i in tqdm(range(nx), leave=False):
            data_tmp = data[i,j]
            lat4 = Ωgrid_lat[i:i+2, j:j+2].reshape(-1)
            lon4 = Ωgrid_lon[i:i+2, j:j+2].reshape(-1)
            # Filtrage régions sans données
            if negative_values:
                data_ok = (not np.isnan(data_tmp)) & (not np.isinf(data_tmp))
            else:   # negative values = No data
                data_ok = (not np.isnan(data_tmp)) & (data_tmp > 0) & (not np.isinf(data_tmp))
            # Filling grids with data
            if data_ok:
                testin = point_in_poly4(grid_lonC, grid_latC, lon4, lat4)   # Test if in Ω pixel
                grid_data[i_lon_min:i_lon_max, i_lat_min:i_lat_max] += (data_tmp * testin)
                mask[i_lon_min:i_lon_max, i_lat_min:i_lat_max] += testin
                # if testin.any():
                    # print(i,j, np.sum(testin))
    grid_data[grid_data==0] = np.nan
    grid_data2 = grid_data / mask       # Normalisation
    mask2 = np.clip(mask, 0, 1)
    # Re-ordering if negatives longitudes
    if negatives_longitudes:
        n_pos_lon = np.sum(grid_lon[:,0] >= 0) # nb of positives longitudes (>= 0°)
        i_lon0 = np.where(grid_lon[:,0] >= 0)[0][0] # 1st index of lon >= 0°
        # lon
        grid_lon_pl = deepcopy(grid_lon)        # new longitude grid [0°, 360°]
        grid_lon_pl[:n_pos_lon] = grid_lon[i_lon0:]
        grid_lon_pl[n_pos_lon:] = grid_lon[1:i_lon0+1] + 360
        grid_lon = deepcopy(grid_lon_pl)
        # data
        grid_data2_pl = deepcopy(grid_data2)      # new data array
        grid_data2_pl[:n_pos_lon-1] = grid_data2[i_lon0:]
        grid_data2_pl[n_pos_lon-1:] = grid_data2[:i_lon0]
        grid_data2 = deepcopy(grid_data2_pl)
        # mask
        mask2_pl = deepcopy(mask2)      # new mask array
        mask2_pl[:n_pos_lon-1] = mask2[i_lon0:]
        mask2_pl[n_pos_lon-1:] = mask2[:i_lon0]
        mask2 = deepcopy(mask2_pl)
    # Output
    return grid_data2, mask2, grid_lat, grid_lon

omega_plots.save_map_omega_list(omega_list, lat_min=-90, lat_max=90, lon_min=0, lon_max=360, pas_lat=0.1, pas_lon=0.1, lam=1.085, data_list=None, data_desc='', mask_list=None, negative_values=False, proj_method=1, use_V_geom=False, use_L_geom=False, sav_filename='auto', ext='', base_folder='../data/OMEGA/sav_map_list_v2/', sub_folder='')

Save the output of the omega_plots.show_omega_list_v2() function with the requested parameters as a dictionary.

Parameters:

Name Type Description Default
omega_list array of OMEGAdata

The list of OMEGA/MEx observations.

required
lat_min float

The minimal latitude of the grid.

-90
lat_max float

The maximum latitude of the grid.

90
lon_min float

The minimal longitude of the grid.

0
lon_max float

The maximal longitude of the grid.

360
pas_lat float

The latitude intervals of the grid.

0.1
pas_lon float

The longitude intervals of the grid.

0.1
lam float

The selected wavelength (in µm).

1.085
data_list 3D array or None

1D array of the same dimension of omega_list containing alternative maps (2D arrays), in the same order than the observations of omega_list.

None
data_desc str

Description of the data contained in data_list (if used).

''
mask_list 3D array or None

1D array of the same dimension of omega_list containing the masks to remove the corrupted pixels of each observaiton, in the same order than the observations of omega_list.
Each mask is a 2D array, filled with 1 for good pixels and NaN for bad ones.

None
negative_values bool

Set if the negative values are considered as relevant data or not.

False
proj_method int

Select the projection method used (1 or 2).
| 1 → Consider only the center point of each pixel.
Faster but not adapted if the grid resolution is lower than the OMEGA pixels size.
| 2 → Consider the entire spatial extent of each pixel.
More accurate, but take more time.

1
use_V_geom bool

If True, use the geometry of the V-channel instead of the C-channel.

False
use_L_geom bool

If True, use the geometry of the L-channel instead of the C-channel.

False
sav_filename str

The saving file name.
| If 'auto' → Automatically generated.

'auto'
ext str

Extension to add at the end of the filename (useful in case of automatic generation).

''
base_folder str

The base folder to save the data.

'../data/OMEGA/sav_map_list_v2/'
sub_folder str

The subfolder to save the data.
Final path = "base_folder / sub_folder / sav_filename"

''
Source code in omegapy/omega_plots.py
def save_map_omega_list(omega_list, lat_min=-90, lat_max=90, lon_min=0, lon_max=360,
                        pas_lat=0.1, pas_lon=0.1, lam=1.085, data_list=None, data_desc='', 
                        mask_list=None, negative_values=False, proj_method=1, 
                        use_V_geom=False, use_L_geom=False, sav_filename='auto', ext='',
                        base_folder='../data/OMEGA/sav_map_list_v2/', sub_folder=''):
    """Save the output of the `omega_plots.show_omega_list_v2()` function with the requested
    parameters as a dictionary.

    Parameters
    ----------
    omega_list : array of OMEGAdata
        The list of OMEGA/MEx observations.
    lat_min : float, default -90
        The minimal latitude of the grid.
    lat_max : float, default 90
        The maximum latitude of the grid.
    lon_min : float, default 0
        The minimal longitude of the grid.
    lon_max : float, default 360
        The maximal longitude of the grid.
    pas_lat : float, default 0.1
        The latitude intervals of the grid.
    pas_lon : float, default 0.1
        The longitude intervals of the grid.
    lam : float, default 1.085
        The selected wavelength (in µm).
    data_list : 3D array or None, default None
        1D array of the same dimension of `omega_list` containing alternative maps (2D arrays),
        in the **same order** than the observations of `omega_list`.
    data_desc : str, default ''
        Description of the data contained in data_list (if used).
    mask_list : 3D array or None, default None
        1D array of the same dimension of `omega_list` containing the masks to remove the
        corrupted pixels of each observaiton, in the **same order** than the observations of 
        `omega_list`.</br>
        Each mask is a 2D array, filled with 1 for good pixels and NaN for bad ones.
    negative_values : bool, default False
        Set if the negative values are considered as relevant data or not.
    proj_method : int, default 1
        Select the projection method used (1 or 2).</br>
        | `1` --> Consider only the center point of each pixel.</br>
               Faster but not adapted if the grid resolution is lower than the OMEGA pixels size.</br>
        | `2` --> Consider the entire spatial extent of each pixel.</br>
               More accurate, but take more time.
    use_V_geom : bool, default False
        If `True`, use the geometry of the V-channel instead of the C-channel.
    use_L_geom : bool, default False
        If `True`, use the geometry of the L-channel instead of the C-channel.
    sav_filename : str, default 'auto'
        The saving file name.</br>
        | If `'auto'` --> Automatically generated.
    ext : str, default ''
        Extension to add at the end of the filename (useful in case of automatic generation).
    base_folder : str, default '../data/OMEGA/sav_map_list_v2/'
        The base folder to save the data.
    sub_folder : str, default ''
        The subfolder to save the data.</br>
        *Final path = "`base_folder` / `sub_folder` / `sav_filename`"*
    """
    # Initialization filename
    if sav_filename == 'auto':
        sav_filename = ('res_show_omega_list_v2__lat{0:0>2d}-{1:0>2d}_pas{2:0}_'
                        + 'lon{3:0>3d}-{4:0>3d}_pas{5:0}__{6:s}.pkl').format(
                            lat_min, lat_max, pas_lat, lon_min, lon_max, pas_lon, ext)
    sav_filename2 = os.path.join(base_folder, sub_folder, sav_filename)
    if data_list is None:
        data_desc = 'Reflectance @ λ = {0:0} µm'.format(lam)
    elif data_desc == '':
        data_desc = 'unknown input data'
    # Compute the data sampling
    data, mask, grid_lat, grid_lon, mask_obs = show_omega_list_v2(omega_list,
                lam, lat_min, lat_max, lon_min, lon_max, pas_lat, pas_lon,
                data_list=data_list, mask_list=mask_list, negative_values=negative_values,
                proj_method=proj_method, use_V_geom=use_V_geom, use_L_geom=use_L_geom, plot=False, out=True)
    # Sav file
    input_params = {
        'omega_list' : od.get_names(omega_list),
        'lat_min' : lat_min,
        'lat_max' : lat_max,
        'lon_min' : lon_min,
        'lon_max' : lon_max,
        'pas_lat' : pas_lat,
        'pas_lon' : pas_lon,
        'data'    : data_desc,
        'filename': sav_filename,
        'datetime': datetime.datetime.now().strftime('%d/%m/%Y %H:%M'),
        'proj_method' : proj_method,
            }
    save_file = {
        'data' : data,
        'mask' : mask,
        'grid_lat' : grid_lat,
        'grid_lon' : grid_lon,
        'mask_obs' : mask_obs,
        'infos' : input_params
                }
    uf.save_pickle(save_file, sav_filename2, True)

omega_plots.show_cube(cube, i_lam, cmap='Greys_r', vmin=None, vmax=None, cb_title='', Nfig=None)

Display the cube from an OMEGA/MEx observation.

Parameters:

Name Type Description Default
cube 3D array

The data cube (X, Y, wvl).

required
i_lam int

The index of the selected wavelength.

required
cmap str

The matplotlib colormap.

'Greys_r'
vmin float or None

The lower bound of the colorscale.

None
vmax float or None

The upper bound of the colorscale.

None
cb_title str

The title of the colorbar.

''
Nfig int or str or None

The target figure ID.

None
Source code in omegapy/omega_plots.py
def show_cube(cube, i_lam, cmap='Greys_r', vmin=None, vmax=None, cb_title='', Nfig=None):
    """Display the cube from an OMEGA/MEx observation.

    Parameters
    ----------
    cube : 3D array
        The data cube (X, Y, wvl).
    i_lam : int
        The index of the selected wavelength.
    cmap : str, default 'Greys_r'
        The matplotlib colormap.
    vmin : float or None, default None
        The lower bound of the colorscale.
    vmax : float or None, default None
        The upper bound of the colorscale.
    cb_title : str, default ''
        The title of the colorbar.
    Nfig : int or str or None, default None
        The target figure ID.
    """
    fig = plt.figure(Nfig)
    plt.imshow(cube[:,:,i_lam], cmap=cmap, vmin=vmin, vmax=vmax,
               aspect='equal', origin='lower', interpolation=None)
    cb = plt.colorbar()
    cb.set_label(cb_title)
    plt.tight_layout()

omega_plots.show_data_v2(omega, data, cmap='viridis', vmin=None, vmax=None, alpha=None, title='auto', cb_title='data', lonlim=(None, None), latlim=(None, None), Nfig=None, polar=False, cbar=True, grid=True, mask=None, negatives_longitudes='auto', use_V_geom=False, use_L_geom=False, **kwargs)

Display high-level data derived from an OMEGA/MEx observation with respect of the lat/lon coordinates of the pixels, and allows to use a polar projection if desired.

Parameters:

Name Type Description Default
omega OMEGAdata

The OMEGA/MEx observation

required
data 2D array

The array of the computed data values from the OMEGA observation

required
cmap str

The matplotlib colormap.

'Greys_r'
vmin float or None

The lower bound of the colorscale.

None
vmax float or None

The upper bound of the colorscale.

None
alpha float or None

Opacity of the plot, from 0 (transparent) to 1 (opaque).

None
title str

The title of the figure.

'auto'
cb_title str

The title of the colorbar.

'data'
lonlim tuple of int or None

The longitude bounds of the figure.

(None, None)
latlim tuple of int or None

The latitude bounds of the y-axis of the figure.

(None, None)
Nfig int or str or None

The target figure ID.

None
polar bool

If True → Use a polar projection for the plot.

False
cbar bool

If True → Display the colorbar.

True
grid bool

Enable the display of the lat/lon grid.

True
mask 2D array or None

The array that identify the bad/corrupted pixels to remove.
If None, all the pixels are conserved.
| 1 → Good pixel
| NaN → Bad pixel

None
negatives_longitudes str or bool

Argument for non-polar plots.
| True → longitudes between 0° and 360°.
| False → longitudes between -180° and 180°.
| 'auto' → automatic detection of the best case.

'auto'
use_V_geom bool

If True, use the geometry of the V-channel instead of the C-channel.

False
use_L_geom bool

If True, use the geometry of the L-channel instead of the C-channel.

False
**kwargs

Optional arguments for the plt.pcolormesh() function.

{}
Source code in omegapy/omega_plots.py
def show_data_v2(omega, data, cmap='viridis', vmin=None, vmax=None, alpha=None, title='auto', 
                cb_title = 'data', lonlim=(None, None), latlim=(None, None), Nfig=None, 
                polar=False, cbar=True, grid=True, mask=None, negatives_longitudes='auto',
                use_V_geom=False, use_L_geom=False, **kwargs):
    """Display high-level data derived from an OMEGA/MEx observation with respect of the 
    lat/lon coordinates of the pixels, and allows to use a polar projection if desired.

    Parameters
    ----------
    omega : OMEGAdata
        The OMEGA/MEx observation
    data : 2D array
        The array of the computed data values from the OMEGA observation
    cmap : str, default 'Greys_r'
        The matplotlib colormap.
    vmin : float or None, default None
        The lower bound of the colorscale.
    vmax : float or None, default None
        The upper bound of the colorscale.
    alpha : float or None, default None
        Opacity of the plot, from 0 (transparent) to 1 (opaque).
    title : str, default 'auto'
        The title of the figure.
    cb_title : str, default 'data'
        The title of the colorbar.
    lonlim : tuple of int or None, default (None, None)
        The longitude bounds of the figure.
    latlim : tuple of int or None, default (None, None)
        The latitude bounds of the y-axis of the figure.
    Nfig : int or str or None, default None
        The target figure ID.
    polar : bool, default False
        If `True` --> Use a polar projection for the plot.
    cbar : bool, default True
        If `True` --> Display the colorbar.
    grid : bool, default True
        Enable the display of the lat/lon grid.
    mask : 2D array or None, default None
        The array that identify the bad/corrupted pixels to remove.</br>
        If `None`, all the pixels are conserved.</br>
        | `1` --> Good pixel</br>
        | `NaN` --> Bad pixel
    negatives_longitudes : str or bool, default 'auto'
        Argument for non-polar plots.</br>
        | `True` --> longitudes between 0° and 360°.</br>
        | `False` --> longitudes between -180° and 180°.</br>
        | `'auto'` --> automatic detection of the best case.
    use_V_geom : bool, default False
        If `True`, use the geometry of the V-channel instead of the C-channel.
    use_L_geom : bool, default False
        If `True`, use the geometry of the L-channel instead of the C-channel.
    **kwargs:
        Optional arguments for the `plt.pcolormesh()` function.
    """
    if use_V_geom and use_L_geom:
        raise ValueError("Cannot use both V and L geometries at the same time.")
    if use_V_geom:
        omega = _switch_default_geom_to_V(omega)
    if use_L_geom:
        omega = _switch_default_geom_to_L(omega)
    if isinstance(negatives_longitudes, str):
        mask_lat = (np.abs(omega.lat) < 85)
        if (omega.lon[mask_lat] < 10).any() and (omega.lon[mask_lat] > 350).any():
            negatives_longitudes = True
    if title == 'auto':
        title = ('OMEGA/MEx observation {0}'.format(omega.name))
    fig = plt.figure(Nfig)
    Nfig = fig.number   # get the actual figure number if Nfig=None
    if not (mask is None):
        data = deepcopy(data) * mask     # apply mask to remove bad pixels (turned to NaN)
    if len(fig.get_axes()) != 0:    # If presence of axes
        ax0 = fig.get_axes()[0]
        is_ax0_polar = hasattr(ax0, 'set_theta_offset') # Test if ax has polar projection
        if not polar == is_ax0_polar:
            raise ValueError("Can not mix polar and non-polar projections in the same plot")
    if polar:
        if len(fig.get_axes()) == 0:    # Test presence of axes in the figure
            ax = plt.axes(polar=True)
        else:
            ax = fig.get_axes()[0]  # Do not create new axes instance
        plt.pcolormesh(omega.lon_grid*np.pi/180, omega.lat_grid, data, cmap=cmap, 
                       alpha=alpha, vmin=vmin, vmax=vmax, **kwargs)
        ax.set_yticklabels([])  # remove the latitude values in the plot
        if latlim[0] is None:
            if np.max(omega.lat) > 0:
                latlim = (90, np.min(omega.lat_grid)-1)
            else:
                latlim = (-90, np.max(omega.lat_grid)+1)
        if latlim[0] > 0:   # Northern hemisphere
            ax.set_theta_offset(-np.pi/2)   # longitude origin at the bottom
        else:               # Southern hemisphere
            ax.set_theta_offset(np.pi/2)    # longitude origin at the top
            ax.set_theta_direction(-1)      # clockwise theta
        plt.xlim(lonlim)
        plt.ylim(latlim)
    else:
        lon_grid2 = deepcopy(omega.lon_grid)
        if negatives_longitudes:
            lon_grid2[lon_grid2 > 180] -= 360
        plt.pcolormesh(lon_grid2, omega.lat_grid, data, cmap=cmap, alpha=alpha,
                       vmin=vmin, vmax=vmax, **kwargs)
        plt.gca().axis('equal')
        plt.xlim(lonlim)
        plt.ylim(latlim)
        plt.gca().set_adjustable('box')
        plt.xlabel('Longitude [°]')
        plt.ylabel('Latitude [°]')
    if cbar:
        cb = plt.colorbar()
        cb.set_label(cb_title)
    plt.grid(visible=False)
    if grid:
        ax = plt.figure(Nfig).get_axes()[0]
        lonlim = ax.get_xlim()
        latlim = ax.get_ylim()
        lon_sgn = np.sign(lonlim[1] - lonlim[0])
        lat_sgn = np.sign(latlim[1] - latlim[0])
        lon_grid = np.arange(np.round(lonlim[0]/10)*10, np.round(lonlim[1]/10)*10+lon_sgn, 
                    10 * lon_sgn)   # 10° grid in longitude
        lat_grid = np.arange(np.round(latlim[0]/10)*10, np.round(latlim[1]/10)*10+lat_sgn, 
                    10 * lat_sgn)   # 10° grid in latitude
        plt.grid(visible=True)
        if polar:
            ax.set_rticks(lat_grid)
        else:
            ax.set_xticks(lon_grid)
            ax.set_yticks(lat_grid)
    plt.title(title)
    plt.tight_layout()

omega_plots.show_omega(omega, lam, refl=True, lam_unit='m', cmap='Greys_r', vmin=None, vmax=None, title='auto', xlim=(None, None), ylim=(None, None), Nfig=None, mask=None)

Display an OMEGA/MEx observation in a rectangular pixel grid.

Parameters:

Name Type Description Default
omega OMEGAdata

The OMEGA/MEx observation

required
lam float

The selected wavelength.

required
refl bool

| True → The reflectance is displayed.
| False → The radiance is displayed.

True
lam_unit str

The unit of the lam parameter:
| 'm'lam is the wavelength value (in µm).
| else → lam is the index of the wavelength in the omega.lam array (must be int).

'm'
cmap str

The matplotlib colormap.

'Greys_r'
vmin float or None

The lower bound of the colorscale.

None
vmax float or None

The upper bound of the colorscale.

None
title str

The title of the figure.

'auto'
xlim tuple of int or None

The bounds of the x-axis of the figure.

(None, None)
ylim tuple of int or None

The bounds of the y-axis of the figure.

(None, None)
Nfig int or str or None

The target figure ID.

None
mask 2D array or None

The array that identify the bad/corrupted pixels to remove.
If None, all the pixels are conserved.
| 1 → Good pixel
| NaN → Bad pixel

None
Source code in omegapy/omega_plots.py
def show_omega(omega, lam, refl=True, lam_unit='m', cmap='Greys_r', vmin=None, vmax=None,
               title='auto', xlim=(None, None), ylim=(None, None), Nfig=None, mask=None):
    """Display an OMEGA/MEx observation in a rectangular pixel grid.

    Parameters
    ----------
    omega : OMEGAdata
        The OMEGA/MEx observation
    lam : float
        The selected wavelength.
    refl : bool, default True
        | `True` --> The reflectance is displayed.</br>
        | `False` --> The radiance is displayed.
    lam_unit : str, default 'm'
        The unit of the `lam` parameter:</br>
        | `'m'` --> `lam` is the wavelength value (in µm).</br>
        | else --> `lam` is the index of the wavelength in the `omega.lam` array (must be `int`).
    cmap : str, default 'Greys_r'
        The matplotlib colormap.
    vmin : float or None, default None
        The lower bound of the colorscale.
    vmax : float or None, default None
        The upper bound of the colorscale.
    title : str, default 'auto'
        The title of the figure.
    xlim : tuple of int or None, default (None, None)
        The bounds of the x-axis of the figure.
    ylim : tuple of int or None, default (None, None)
        The bounds of the y-axis of the figure.
    Nfig : int or str or None, default None
        The target figure ID.
    mask : 2D array or None, default None
        The array that identify the bad/corrupted pixels to remove.</br>
        If `None`, all the pixels are conserved.</br>
        | `1` --> Good pixel</br>
        | `NaN` --> Bad pixel
    """
    if ((lam_unit == 'm') or isinstance(lam, float)) and (lam < 10):
        i_lam = uf.where_closer(lam, omega.lam)
    else:
        i_lam = deepcopy(lam)
    lam = omega.lam[i_lam]
    if refl:
        cube = deepcopy(omega.cube_rf)
        cb_title = r'Reflectance @ $\lambda$' + ' = {0:.2f} µm'.format(lam)
    else:
        cube = deepcopy(omega.cube_i)
        cb_title = (r'Radiance [W.m$^{-2}$.sr$^{-1}$.µm$^{-1}$] at $\lambda$' + 
                    ' = {0:.2f} µm'.format(lam))
    if not (mask is None):
        cube = (cube.T * mask.T).T      # apply mask to remove bad pixels (turned to NaN)
    if title == 'auto':
        title = 'OMEGA/MEx observation {0}\n'.format(omega.name) 
    show_cube(cube, i_lam, cmap, vmin, vmax, cb_title, Nfig)
    plt.xlim(xlim)
    plt.ylim(ylim)
    plt.title(title)
    plt.tight_layout()

omega_plots.show_omega_interactif(omega, lam, refl=True, lam_unit='m', cmap='Greys_r', vmin=None, vmax=None, title='auto', autoyscale=True, xlim=(None, None), ylim=(None, None))

Interactive display of an OMEGA/MEx data cube.

Possibility to display the spectrum associated with a pixel of the cube by clicking on it on the map (hold Ctrl to superpose multiple spectra), or by using the keyboard arrows.

Parameters:

Name Type Description Default
omega OMEGAdata

The OMEGA/MEx observation

required
lam float

The selected wavelength.

required
refl bool

| True → The reflectance is displayed.
| False → The radiance is displayed.

True
lam_unit str

The unit of the lam parameter:
| 'm'lam is the wavelength value (in µm).
| else → lam is the index of the wavelength in the omega.lam array (must be int).

'm'
cmap str

The matplotlib colormap.

'Greys_r'
vmin float or None

The lower bound of the colorscale.

None
vmax float or None

The upper bound of the colorscale.

None
title str

The title of the figure.

'auto'
xlim tuple of int or None

The bounds of the x-axis of the figure.

(None, None)
ylim tuple of int or None

The bounds of the y-axis of the figure.

(None, None)
Source code in omegapy/omega_plots.py
def show_omega_interactif(omega, lam, refl=True, lam_unit='m', cmap='Greys_r', 
                          vmin=None, vmax=None, title='auto', autoyscale=True,
                          xlim=(None, None), ylim=(None, None)):
    """Interactive display of an OMEGA/MEx data cube.

    Possibility to display the spectrum associated with a pixel of the cube by
    clicking on it on the map (hold ++ctrl++ to superpose multiple spectra),
    or by using the keyboard arrows.

    Parameters
    ----------
    omega : OMEGAdata
        The OMEGA/MEx observation
    lam : float
        The selected wavelength.
    refl : bool, default True
        | `True` --> The reflectance is displayed.</br>
        | `False` --> The radiance is displayed.
    lam_unit : str, default 'm'
        The unit of the `lam` parameter:</br>
        | `'m'` --> `lam` is the wavelength value (in µm).</br>
        | else --> `lam` is the index of the wavelength in the `omega.lam` array (must be `int`).
    cmap : str, default 'Greys_r'
        The matplotlib colormap.
    vmin : float or None, default None
        The lower bound of the colorscale.
    vmax : float or None, default None
        The upper bound of the colorscale.
    title : str, default 'auto'
        The title of the figure.
    xlim : tuple of int or None, default (None, None)
        The bounds of the x-axis of the figure.
    ylim : tuple of int or None, default (None, None)
        The bounds of the y-axis of the figure.
    """
    # Initialisation
    if refl:
        yaxis = 'Reflectance'
        cube = omega.cube_rf
    else:
        yaxis = r'Radiance [W.m$^{-2}$.sr$^{-1}$.µm$^{-1}$]'
        cube = omega.cube_i
    ny, nx, nlam = cube.shape
    xx, yy = np.meshgrid(np.arange(nx), np.arange(ny))
    fig1, ax1 = plt.subplots(1,1)
    nfig = fig1.number
    ax1.scatter(xx, yy, marker='s', s=1, picker=True, alpha=0)
    show_omega(omega, lam, refl, lam_unit, cmap, vmin, vmax, title, 
               xlim, ylim, nfig)
    sc_pos = []
    if xlim[0] is None:
        xcoord = 0
    else:
        xcoord = deepcopy(xlim[0])
    if ylim[0] is None:
        ycoord = 0
    else:
        ycoord = deepcopy(ylim[0])

    #---------------------------------
    # Plot spectra fig2 function
    def plot_sp(xcoord, ycoord, clear=True):
        nonlocal sc_pos
        fig2 = plt.figure(-nfig)
        if clear:
            fig2.clf()
            for sc in sc_pos:
                sc.remove()
            sc_pos = []
        line = plt.plot(omega.lam, cube[ycoord, xcoord], 
                        label='lat = {0:.2f}° | lon= {1:.2f}°'.format(omega.lat[ycoord, xcoord], 
                                                                      omega.lon[ycoord, xcoord]))
        plt.xlabel(r'$\lambda$ [µm]')
        plt.ylabel(yaxis)
        plt.title('OMEGA/MEx observation {0}'.format(omega.name))
        plt.legend(loc='best')
        ymin, ymax = fig2.get_axes()[0].get_ylim()
        # Rescale ordonnées
        if autoyscale:
            if (vmin!=None) and (ymin > vmin):
                ymin = vmin
            if (vmax!=None) and (ymax < vmax):
                ymax = vmax
        else:
            ymin, ymax = vmin, vmax
        plt.ylim(ymin, ymax)
        fig2.canvas.draw()
        fig2.canvas.flush_events()
        fig2.tight_layout()
        last_plot_color = line[0].get_color()
        sc_pos.append(ax1.scatter(xcoord, ycoord, marker='s', s=20, color=last_plot_color))
        fig1.canvas.draw()
        fig1.canvas.flush_events()

    #---------------------------------
    # Picking function clic souris
    def pick_pos(event):
        nonlocal xcoord, ycoord
        ctrl = event.mouseevent.key == 'control'    # test si la touche ctrl est enfoncée
        artist = event.artist
        ind = event.ind[0]
        xcoord, ycoord = artist.get_offsets()[ind]
        xcoord, ycoord = int(xcoord), int(ycoord)
        # if not ctrl:        # Si Ctrl enfoncée, pas le plot précédent est conservé
            # plt.clf()
        plot_sp(xcoord, ycoord, not ctrl)

    #---------------------------------
    # Picking function keyboard
    def change_pos(event):
        nonlocal xcoord, ycoord
        key = event.key
        if (0 < xcoord) and (key=='left'):
            xcoord -= 1
            plot_sp(xcoord, ycoord, clear=True)
        elif (xcoord < nx-1) and (key=='right'):
            xcoord += 1
            plot_sp(xcoord, ycoord, clear=True)
        if (0 < ycoord) and (key=='down'):
            ycoord -= 1
            plot_sp(xcoord, ycoord, clear=True)
        elif (ycoord < ny-1) and (key=='up'):
            ycoord += 1
            plot_sp(xcoord, ycoord, clear=True)

    #---------------------------------
    # Lien avec la figure
    cid = fig1.canvas.mpl_connect('pick_event', pick_pos)
    cid2 = fig1.canvas.mpl_connect('key_press_event', change_pos)

omega_plots.show_omega_interactif2(omega, lam, refl=True, lam_unit='m', cmap='Greys_r', vmin=None, vmax=None, title='auto', xlim=(None, None), ylim=(None, None))

Interactive display of an OMEGA/MEx data cube.

Possibility to display the spectrum associated with a pixel of the cube by clicking on it on the map (hold Ctrl to superpose multiple spectra), or by using the keyboard arrows.

Parameters:

Name Type Description Default
omega OMEGAdata

The OMEGA/MEx observation

required
lam float

The selected wavelength.

required
refl bool

| True → The reflectance is displayed.
| False → The radiance is displayed.

True
lam_unit str

The unit of the lam parameter:
| 'm'lam is the wavelength value (in µm).
| else → lam is the index of the wavelength in the omega.lam array (must be int).

'm'
cmap str

The matplotlib colormap.

'Greys_r'
vmin float or None

The lower bound of the colorscale.

None
vmax float or None

The upper bound of the colorscale.

None
title str

The title of the figure.

'auto'
xlim tuple of int or None

The bounds of the x-axis of the figure.

(None, None)
ylim tuple of int or None

The bounds of the y-axis of the figure.

(None, None)
Source code in omegapy/omega_plots.py
def show_omega_interactif2(omega, lam, refl=True, lam_unit='m', cmap='Greys_r', 
                          vmin=None, vmax=None, title='auto', 
                          xlim=(None, None), ylim=(None, None)):
    """Interactive display of an OMEGA/MEx data cube.

    Possibility to display the spectrum associated with a pixel of the cube by
    clicking on it on the map (hold ++ctrl++ to superpose multiple spectra),
    or by using the keyboard arrows.

    Parameters
    ----------
    omega : OMEGAdata
        The OMEGA/MEx observation
    lam : float
        The selected wavelength.
    refl : bool, default True
        | `True` --> The reflectance is displayed.</br>
        | `False` --> The radiance is displayed.
    lam_unit : str, default 'm'
        The unit of the `lam` parameter:</br>
        | `'m'` --> `lam` is the wavelength value (in µm).</br>
        | else --> `lam` is the index of the wavelength in the `omega.lam` array (must be `int`).
    cmap : str, default 'Greys_r'
        The matplotlib colormap.
    vmin : float or None, default None
        The lower bound of the colorscale.
    vmax : float or None, default None
        The upper bound of the colorscale.
    title : str, default 'auto'
        The title of the figure.
    xlim : tuple of int or None, default (None, None)
        The bounds of the x-axis of the figure.
    ylim : tuple of int or None, default (None, None)
        The bounds of the y-axis of the figure.
    """
    # Initialisation
    if refl:
        yaxis = 'Reflectance'
        cube = omega.cube_rf
    else:
        yaxis = r'Radiance [W.m$^{-2}$.sr$^{-1}$.µm$^{-1}$]'
        cube = omega.cube_i
    Lam = omega.lam
    ny, nx, nlam = cube.shape
    xx, yy = np.meshgrid(np.arange(nx), np.arange(ny))
    fig1, ax1 = plt.subplots(1,1)
    nfig = fig1.number
    ax1.scatter(xx, yy, marker='s', s=1, picker=True, alpha=0)
    show_omega(omega, lam, refl, lam_unit, cmap, vmin, vmax, title, 
               xlim, ylim, nfig)
    sc_pos = []
    if xlim[0] is None:
        xcoord = 0
    else:
        xcoord = deepcopy(xlim[0])
    if ylim[0] is None:
        ycoord = 0
    else:
        ycoord = deepcopy(ylim[0])
    # Sliders
    axcolor = 'lightgoldenrodyellow'
    axlam = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor=axcolor)
    slam = Slider(axlam, r'$\lambda$ [µm]', Lam[0], Lam[-1], valinit=lam, valfmt='%1.2f')

    def update_img(lam):
        # ax1.collections[0].remove()
        # print(lam)
        lam = slam.val
        if ((lam_unit == 'm') or isinstance(lam, float)) and (lam < 10):
            i_lam = uf.where_closer(lam, omega.lam)
        else:
            i_lam = deepcopy(lam)
        lam = omega.lam[i_lam]
        ax1.images[0].set_array(cube[:,:,i_lam])
        title = r'$\lambda$' + ' = {0:.2f} µm'.format(Lam[i_lam])
        ax1.set_title(title)
        fig1.canvas.draw_idle()
    slam.on_changed(update_img)

    #---------------------------------
    # Plot spectra fig2 function
    def plot_sp(xcoord, ycoord, clear=True):
        nonlocal sc_pos
        fig2 = plt.figure(-nfig)
        if clear:
            fig2.clf()
            for sc in sc_pos:
                sc.remove()
            sc_pos = []
        line = plt.plot(omega.lam, cube[ycoord, xcoord], 
                        label='lat = {0:.2f}° | lon= {1:.2f}°'.format(omega.lat[ycoord, xcoord], 
                                                                      omega.lon[ycoord, xcoord]))
        plt.xlabel(r'$\lambda$ [µm]')
        plt.ylabel(yaxis)
        plt.title('OMEGA/MEx observation {0}'.format(omega.name))
        plt.legend(loc='best')
        ymin, ymax = fig2.get_axes()[0].get_ylim()
        # Rescale ordonnées
        if (vmin!=None) and (ymin > vmin):
            ymin = vmin
        if (vmax!=None) and (ymax < vmax):
            ymax = vmax
        plt.ylim(ymin, ymax)
        fig2.canvas.draw()
        fig2.canvas.flush_events()
        fig2.tight_layout()
        last_plot_color = line[0].get_color()
        sc_pos.append(ax1.scatter(xcoord, ycoord, marker='s', s=20, color=last_plot_color))
        fig1.canvas.draw()
        fig1.canvas.flush_events()

    #---------------------------------
    # Picking function clic souris
    def pick_pos(event):
        nonlocal xcoord, ycoord
        ctrl = event.mouseevent.key == 'control'    # test si la touche ctrl est enfoncée
        artist = event.artist
        ind = event.ind[0]
        xcoord, ycoord = artist.get_offsets()[ind]
        xcoord, ycoord = int(xcoord), int(ycoord)
        # if not ctrl:        # Si Ctrl enfoncée, pas le plot précédent est conservé
            # plt.clf()
        plot_sp(xcoord, ycoord, not ctrl)

    #---------------------------------
    # Picking function keyboard
    def change_pos(event):
        nonlocal xcoord, ycoord
        key = event.key
        if (0 < xcoord) and (key=='left'):
            xcoord -= 1
            plot_sp(xcoord, ycoord, clear=True)
        elif (xcoord < nx-1) and (key=='right'):
            xcoord += 1
            plot_sp(xcoord, ycoord, clear=True)
        if (0 < ycoord) and (key=='down'):
            ycoord -= 1
            plot_sp(xcoord, ycoord, clear=True)
        elif (ycoord < ny-1) and (key=='up'):
            ycoord += 1
            plot_sp(xcoord, ycoord, clear=True)

    #---------------------------------
    # Lien avec la figure
    cid = fig1.canvas.mpl_connect('pick_event', pick_pos)
    cid2 = fig1.canvas.mpl_connect('key_press_event', change_pos)

omega_plots.show_omega_interactif_v2(omega, lam=1.085, refl=True, lam_unit='m', data=None, cmap='Greys_r', cb_title='data', title='auto', vmin=None, vmax=None, autoyscale=True, ylim_sp=(None, None), alpha=None, lonlim=(None, None), latlim=(None, None), polar=False, cbar=True, grid=True, mask=None, lam_mask=None, negatives_longitudes='auto', use_V_geom=False, use_L_geom=False, **kwargs)

Interactive display of an OMEGA/MEx data cube with respect of the lat/lon coordinates of the pixels, and allows to use a polar projection if desired.

Possibility to display the spectrum associated with a pixel of the cube by clicking on it on the map (hold Ctrl to superpose multiple spectra), or by using the keyboard arrows.
The displayed spectra are stored in the picked_spectra[nfig] dictionary.

Parameters:

Name Type Description Default
omega OMEGAdata

The OMEGA/MEx observation

required
lam float

The selected wavelength.

1.085
refl bool

| True → The reflectance is displayed.
| False → The radiance is displayed.

True
lam_unit str

The unit of the lam parameter:
| 'm'lam is the wavelength value (in µm).
| else → lam is the index of the wavelength in the omega.lam array (must be int).

'm'
data 2D array or None

Array of high-level data (e.g. IBD map) computed from the omega observation.

None
cmap str

The matplotlib colormap.

'Greys_r'
cb_title str

The title of the colorbar.
Note : Only for the data plots.

'data'
title str

The title of the figure.

'auto'
vmin float or None

The lower bound of the colorscale.

None
vmax float or None

The upper bound of the colorscale.

None
autoyscale bool

| True → Enable the auto-scaling of the spectra y-axis.
| False → Force use of the (vmin, vmax) bounds for the spectra plots.

True
ylim_sp tuple of float or None

If autoyscale is False, can specify the bound values for the spectrum y-axis, other that (vmin, vmax).

(None, None)
alpha float or None

Opacity of the plot, from 0 (transparent) to 1 (opaque).

None
lonlim tuple of int or None

The longitude bounds of the figure.

(None, None)
latlim tuple of int or None

The latitude bounds of the y-axis of the figure.

(None, None)
polar bool

If True → Use a polar projection for the plot.

False
cbar bool

If True → Diplay the colorbar.

True
grid bool

Enable the display of the lat/lon grid.

True
mask 2D array or None

The array that identify the bad/corrupted pixels to remove.
If None, all the pixels are conserved.
| 1 → Good pixel
| NaN → Bad pixel

None
lam_mask 1D array or None

The array that identify the bad/corrupted spectels to remove.
If None, all the spectels are conserved.
| True → Good spectel
| False → Bad spectel

None
negatives_longitudes str or bool

Argument for non-polar plots.
| True → longitudes between 0° and 360°.
| False → longitudes between -180° and 180°.
| 'auto' → automatic detection of the best case.

'auto'
use_V_geom bool

If True, use the geometry of the V-channel instead of the C-channel.

False
use_L_geom bool

If True, use the geometry of the L-channel instead of the C-channel.

False
**kwargs

Optional arguments for the plt.pcolormesh() function.

{}
Source code in omegapy/omega_plots.py
def show_omega_interactif_v2(omega, lam=1.085, refl=True, lam_unit='m', data=None, 
                             cmap='Greys_r', cb_title='data', title='auto',
                             vmin=None, vmax=None, autoyscale=True, ylim_sp=(None, None),
                             alpha=None, lonlim=(None, None), latlim=(None, None),
                             polar=False, cbar=True, grid=True, mask=None, lam_mask=None,
                             negatives_longitudes='auto', use_V_geom=False, use_L_geom=False, **kwargs):
    """Interactive display of an OMEGA/MEx data cube with respect of the lat/lon 
    coordinates of the pixels, and allows to use a polar projection if desired.

    Possibility to display the spectrum associated with a pixel of the cube by
    clicking on it on the map (hold ++ctrl++ to superpose multiple spectra),
    or by using the keyboard arrows.</br>
    *The displayed spectra are stored in the `picked_spectra[nfig]` dictionary.*

    Parameters
    ----------
    omega : OMEGAdata
        The OMEGA/MEx observation
    lam : float, default 1.085
        The selected wavelength.
    refl : bool, default True
        | `True` --> The reflectance is displayed.</br>
        | `False` --> The radiance is displayed.
    lam_unit : str, default 'm'
        The unit of the `lam` parameter:</br>
        | `'m'` --> `lam` is the wavelength value (in µm).</br>
        | else --> `lam` is the index of the wavelength in the `omega.lam` array (must be `int`).
    data : 2D array or None, default None
        Array of high-level data (e.g. IBD map) computed from the omega observation.
    cmap : str, default 'Greys_r'
        The matplotlib colormap.
    cb_title : str, default 'data'
        The title of the colorbar.</br>
        Note : Only for the `data` plots.
    title : str, default 'auto'
        The title of the figure.
    vmin : float or None, default None
        The lower bound of the colorscale.
    vmax : float or None, default None
        The upper bound of the colorscale.
    autoyscale : bool, default True
        | `True` --> Enable the auto-scaling of the spectra y-axis.</br>
        | `False` --> Force use of the (vmin, vmax) bounds for the spectra plots.
    ylim_sp : tuple of float or None, default (None, None)
        If autoyscale is False, can specify the bound values for the spectrum y-axis,
        other that `(vmin, vmax)`.
    alpha : float or None, default None
        Opacity of the plot, from 0 (transparent) to 1 (opaque).
    lonlim : tuple of int or None, default (None, None)
        The longitude bounds of the figure.
    latlim : tuple of int or None, default (None, None)
        The latitude bounds of the y-axis of the figure.
    polar : bool, default False
        If `True` --> Use a polar projection for the plot.
    cbar : bool, default True
        If `True` --> Diplay the colorbar.
    grid : bool, default True
        Enable the display of the lat/lon grid.
    mask : 2D array or None, default None
        The array that identify the bad/corrupted pixels to remove.</br>
        If `None`, all the pixels are conserved.</br>
        | `1` --> Good pixel</br>
        | `NaN` --> Bad pixel
    lam_mask : 1D array or None, default None
        The array that identify the bad/corrupted spectels to remove.</br>
        If `None`, all the spectels are conserved.</br>
        | `True` --> Good spectel</br>
        | `False` --> Bad spectel
    negatives_longitudes : str or bool, default 'auto'
        Argument for non-polar plots.</br>
        | `True` --> longitudes between 0° and 360°.</br>
        | `False` --> longitudes between -180° and 180°.</br>
        | `'auto'` --> automatic detection of the best case.
    use_V_geom : bool, default False
        If `True`, use the geometry of the V-channel instead of the C-channel.
    use_L_geom : bool, default False
        If `True`, use the geometry of the L-channel instead of the C-channel.
    **kwargs:
        Optional arguments for the `plt.pcolormesh()` function.
    """
    if omega.point_mode != 'NADIR':
        print("\033[1m\nWarning: The pointing mode of this cube is not NADIR, "
         + "thus it may be a better idea to use a non-projected display "
         + "(e.g., show_omega_interactif()).\033[0m")
    if use_V_geom and use_L_geom:
        raise ValueError("Cannot use both V and L geometries at the same time.")
    if use_V_geom:
        omega = _switch_default_geom_to_V(omega)
    if use_L_geom:
        omega = _switch_default_geom_to_L(omega)
    # Initialisation
    if refl:
        yaxis = 'Reflectance'
        cube = omega.cube_rf
    else:
        yaxis = r'Radiance [W.m$^{-2}$.sr$^{-1}$.µm$^{-1}$]'
        cube = omega.cube_i
    ny, nx, nlam = cube.shape
    if isinstance(negatives_longitudes, str):
        mask_lat = (np.abs(omega.lat) < 85)
        if (omega.lon[mask_lat] < 10).any() and (omega.lon[mask_lat] > 350).any():
            negatives_longitudes = True
    if polar:
        lon, lat = omega.lon*np.pi/180, omega.lat
    else:
        lon = deepcopy(omega.lon)
        if negatives_longitudes:
            lon[lon > 180] -= 360
        # lon, lat = omega.lon, omega.lat
        lat = omega.lat
    bij = np.zeros((ny, nx), dtype=int)
    for j in range(ny):
        for i in range(nx):
            bij[j,i] = 10000*j + i
    if lam_mask is None:
        lam_mask = np.ones(len(omega.lam), dtype=bool)
    elif len(lam_mask) != len(omega.lam):
        raise ValueError('omega.lam and lam_mask must have the same dimension')
    lam2 = deepcopy(omega.lam)[lam_mask]
    #---------------------------------
    # Display map
    fig1 = plt.figure()
    nfig = fig1.number
    if data is None:
        show_omega_v2(omega, lam, refl, lam_unit, cmap, vmin, vmax, alpha, title, 
                      lonlim, latlim, nfig, polar, cbar, grid, mask, negatives_longitudes, 
                      use_V_geom, use_L_geom, **kwargs)
    else:
        show_data_v2(omega, data, cmap, vmin, vmax, alpha, title, cb_title, 
                     lonlim, latlim, nfig, polar, cbar, grid, mask, negatives_longitudes,
                     use_V_geom, use_L_geom, **kwargs)
    ax1 = fig1.gca()
    ax1.scatter(lon, lat, c=bij, marker='s', s=1, picker=True, alpha=0)
    sc_pos = []
    if lonlim[0] is None:
        xcoord = 0
    else:
        xcoord = deepcopy(lonlim[0])
    if latlim[0] is None:
        ycoord = 0
    else:
        ycoord = deepcopy(latlim[0])
    ylim_sp = np.array(ylim_sp)
    if ylim_sp[0] is None:
        ylim_sp[0] = vmin
    if ylim_sp[1] is None:
        ylim_sp[1] = vmax

    picked_spectra[nfig] = [lam2]

    #---------------------------------
    # Plot spectra fig2 function
    def plot_sp(xcoord, ycoord, clear=True):
        nonlocal sc_pos
        global picked_spectra
        fig2 = plt.figure(-nfig)
        if clear:
            fig2.clf()
            picked_spectra[nfig] = [lam2]
            for sc in sc_pos:
                sc.remove()
            sc_pos = []
        sp_i = cube[ycoord, xcoord, lam_mask]
        lati = omega.lat[ycoord, xcoord]
        longi = omega.lon[ycoord, xcoord]
        picked_spectra[nfig].append(sp_i)   # Stockage spectres dans variable globale
        line = plt.plot(lam2, sp_i, 
                label='lat = {0:.2f}°N | lon = {1:.2f}°E | pixel coord = ({2:d}, {3:d})'.format(
                                                lati, longi, ycoord, xcoord))
        plt.xlabel(r'$\lambda$ [µm]')
        plt.ylabel(yaxis)
        plt.title('OMEGA/MEx observation {0}'.format(omega.name))
        plt.legend(loc='best')
        ymin, ymax = fig2.get_axes()[0].get_ylim()
        # Rescale ordonnées
        if autoyscale:
            if (vmin!=None) and (ymin > vmin):
                ymin = vmin
            if (vmax!=None) and (ymax < vmax):
                ymax = vmax
        else:
            ymin, ymax = ylim_sp[0], ylim_sp[1]
        plt.ylim(ymin, ymax)
        fig2.canvas.draw()
        fig2.canvas.flush_events()
        fig2.tight_layout()
        longi2 = lon[ycoord, xcoord]    # longitude adaptée si projection polaire
        last_plot_color = line[0].get_color()
        sc_pos.append(ax1.scatter(longi2, lati, marker='s', s=20, color=last_plot_color))
        fig1.canvas.draw()
        fig1.canvas.flush_events()

    #---------------------------------
    # Picking function clic souris
    def pick_pos(event):
        nonlocal xcoord, ycoord
        ctrl = event.mouseevent.key == 'control'    # test si la touche ctrl est enfoncée
        artist = event.artist
        ind = event.ind[0]
        bij_value = artist.get_array()[ind]
        xcoord = int(bij_value % 10000)
        ycoord = int(bij_value // 10000)
        plot_sp(xcoord, ycoord, not ctrl)

    #---------------------------------
    # Picking function keyboard
    def change_pos(event):
        nonlocal xcoord, ycoord
        key = event.key
        if (0 < xcoord) and (key=='left'):
            xcoord -= 1
            plot_sp(xcoord, ycoord, clear=True)
        elif (xcoord < nx-1) and (key=='right'):
            xcoord += 1
            plot_sp(xcoord, ycoord, clear=True)
        if (0 < ycoord) and (key=='down'):
            ycoord -= 1
            plot_sp(xcoord, ycoord, clear=True)
        elif (ycoord < ny-1) and (key=='up'):
            ycoord += 1
            plot_sp(xcoord, ycoord, clear=True)

    #---------------------------------
    # Lien avec la figure
    cid = fig1.canvas.mpl_connect('pick_event', pick_pos)
    cid2 = fig1.canvas.mpl_connect('key_press_event', change_pos)

omega_plots.show_omega_list_v2(omega_list, lam=1.085, lat_min=-90, lat_max=90, lon_min=0, lon_max=360, pas_lat=0.1, pas_lon=0.1, cmap='Greys_r', vmin=None, vmax=None, title='auto', Nfig=None, polar=False, cbar=True, cb_title='auto', data_list=None, mask_list=None, negative_values=False, plot=True, grid=True, out=False, negatives_longitudes=False, proj_method=1, use_V_geom=False, use_L_geom=False, edgecolor='face', lw=0.1, **kwargs)

Display an composite map from a list OMEGA/MEx observations, sampled on a new lat/lon grid.

Parameters:

Name Type Description Default
omega_list array of OMEGAdata

The list of OMEGA/MEx observations.

required
lam float

The selected wavelength (in µm).

1.085
lat_min float

The minimal latitude of the grid.

-90
lat_max float

The maximum latitude of the grid.

90
lon_min float

The minimal longitude of the grid.

0
lon_max float

The maximal longitude of the grid.

360
pas_lat float

The latitude intervals of the grid.

0.1
pas_lon float

The longitude intervals of the grid.

0.1
cmap str

The matplotlib colormap.

'Greys_r'
vmin float or None

The lower bound of the colorscale.

None
vmax float or None

The upper bound of the colorscale.

None
title str

The title of the figure.

'auto'
Nfig int or str or None

The target figure ID.

None
polar bool

If True → Use a polar projection for the plot.

False
cbar bool

If True → Diplay the colorbar.

True
cb_title str

The title of the colorbar.

'auto'
data_list 3D array or None

1D array of the same dimension of omega_list containing alternative maps (2D arrays), in the same order than the observations of omega_list.

None
mask_list 3D array or None

1D array of the same dimension of omega_list containing the masks to remove the corrupted pixels of each observaiton, in the same order than the observations of omega_list.
Each mask is a 2D array, filled with 1 for good pixels and NaN for bad ones.

None
negative_values bool

Set if the negative values are considered as relevant data or not.

False
plot bool

If True → Diplay the final figure.

True
grid bool

Enable the display of the lat/lon grid.

True
out bool

If True → Return output.

False
negatives_longitudes bool

Argument for non-polar plots.
| True → longitudes between 0° and 360°.
| False → longitudes between -180° and 180°.

False
proj_method int

Select the projection method used (1 or 2).
| 1 → Consider only the center point of each pixel.
Faster but not adapted if the grid resolution is lower than the OMEGA pixels size.
| 2 → Consider the entire spatial extent of each pixel.
More accurate, but take more time.

1
use_V_geom bool

If True, use the geometry of the V-channel instead of the C-channel.

False
use_L_geom bool

If True, use the geometry of the L-channel instead of the C-channel.

False
edgecolor 'none', None, 'face', color', color sequence

The color of the edges, see documentation of plt.pcolormesh for more details.
Added in version 2.2.8 to fix display due for new version of matplotlib.

Should be set to face if using projection method 1, or none for projection method 2.

'none'
lw float

The line width of the edges (if displayed).

0.1
**kwargs

Optional arguments for the plt.pcolormesh() function.

{}

Returns:

Name Type Description
data 2D array (dim : Nlon x Nlat)

The omega reflectance at lam, sampled on the new lat/lon grid.

mask 2D array

The array indicating where the new grid has been filled by the OMEGA data.

grid_lat 2D array

The new latitude grid.

grid_lon 2D array

The new longitude grid.

mask_obs 2D array of str

The array indicating which observations have been used to fill each grid position.

Source code in omegapy/omega_plots.py
def show_omega_list_v2(omega_list, lam=1.085, lat_min=-90, lat_max=90, lon_min=0, lon_max=360,
                       pas_lat=0.1, pas_lon=0.1, cmap='Greys_r', vmin=None, vmax=None, 
                       title='auto', Nfig=None, polar=False, cbar=True, cb_title='auto',
                       data_list=None, mask_list=None, negative_values=False, plot=True, 
                       grid=True, out=False, negatives_longitudes=False, proj_method=1,
                       use_V_geom=False, use_L_geom=False, edgecolor='face', lw=0.1, **kwargs):
    """Display an composite map from a list OMEGA/MEx observations, sampled on a new lat/lon grid.

    Parameters
    ----------
    omega_list : array of OMEGAdata
        The list of OMEGA/MEx observations.
    lam : float, default 1.085
        The selected wavelength (in µm).
    lat_min : float, default -90
        The minimal latitude of the grid.
    lat_max : float, default 90
        The maximum latitude of the grid.
    lon_min : float, default 0
        The minimal longitude of the grid.
    lon_max : float, default 360
        The maximal longitude of the grid.
    pas_lat : float, default 0.1
        The latitude intervals of the grid.
    pas_lon : float, default 0.1
        The longitude intervals of the grid.
    cmap : str, default 'Greys_r'
        The matplotlib colormap.
    vmin : float or None, default None
        The lower bound of the colorscale.
    vmax : float or None, default None
        The upper bound of the colorscale.
    title : str, default 'auto'
        The title of the figure.
    Nfig : int or str or None, default None
        The target figure ID.
    polar : bool, default False
        If `True` --> Use a polar projection for the plot.
    cbar : bool, default True
        If `True` --> Diplay the colorbar.
    cb_title : str, default 'auto'
        The title of the colorbar.
    data_list : 3D array or None, default None
        1D array of the same dimension of `omega_list` containing alternative maps (2D arrays),
        in the **same order** than the observations of `omega_list`.
    mask_list : 3D array or None, default None
        1D array of the same dimension of `omega_list` containing the masks to remove the
        corrupted pixels of each observaiton, in the **same order** than the observations of 
        `omega_list`.</br>
        Each mask is a 2D array, filled with 1 for good pixels and NaN for bad ones.
    negative_values : bool, default False
        Set if the negative values are considered as relevant data or not.
    plot : bool, default True
        If `True` --> Diplay the final figure.
    grid : bool, default True
        Enable the display of the lat/lon grid.
    out : bool, default False
        If `True` --> Return output.
    negatives_longitudes : bool, default False
        Argument for non-polar plots.</br>
        | `True` --> longitudes between 0° and 360°.</br>
        | `False` --> longitudes between -180° and 180°.
    proj_method : int, default 1
        Select the projection method used (1 or 2).</br>
        | `1` --> Consider only the center point of each pixel.<br>
               Faster but not adapted if the grid resolution is lower than the OMEGA pixels size.</br>
        | `2` --> Consider the entire spatial extent of each pixel.</br>
               More accurate, but take more time.
    use_V_geom : bool, default False
        If `True`, use the geometry of the V-channel instead of the C-channel.
    use_L_geom : bool, default False
        If `True`, use the geometry of the L-channel instead of the C-channel.
    edgecolor : {'none', None, 'face', color', color sequence}, default 'face'
        The color of the edges, see documentation of `plt.pcolormesh` for more details.</br>
        *Added in version 2.2.8 to fix display due for new version of matplotlib.*</br>
        > Should be set to `face` if using projection method `1`, 
        or `none` for projection method `2`.
    lw : float, default 0.1
        The line width of the edges (if displayed).
    **kwargs:
        Optional arguments for the `plt.pcolormesh()` function.

    Returns
    -------
    data : 2D array (dim : Nlon x Nlat)
        The omega reflectance at lam, sampled on the new lat/lon grid.
    mask : 2D array
        The array indicating where the new grid has been filled by the OMEGA data.
    grid_lat : 2D array
        The new latitude grid.
    grid_lon : 2D array
        The new longitude grid.
    mask_obs : 2D array of str
        The array indicating which observations have been used to fill each grid position.
    """
    if proj_method not in [1, 2]:
        raise ValueError("`proj_method` must be 1 (pixel centers) or 2 (polygons).")
    if use_V_geom and use_L_geom:
        raise ValueError("Cannot use both V and L geometries at the same time.")
    # Sampling on same grid
    lat_array = np.arange(lat_min, lat_max+pas_lat, pas_lat)
    lon_array = np.arange(lon_min, lon_max+pas_lon, pas_lon)
    Nlon, Nlat = len(lon_array)-1, len(lat_array)-1
    grid_lat, grid_lon = np.meshgrid(lat_array, lon_array)
    data, mask = np.zeros((Nlon, Nlat)), np.zeros((Nlon, Nlat))
    mask_obs = np.ndarray((Nlon, Nlat), dtype=object)
    mask_obs.fill('')
    if not (mask_list is None):
        check_list_mask_omega(omega_list, mask_list, disp=True)
    if data_list is None:
        for i, omega in enumerate(tqdm(omega_list)):
            if use_V_geom:
                omega = _switch_default_geom_to_V(omega)
            if use_L_geom:
                omega = _switch_default_geom_to_L(omega)
            i_lam = uf.where_closer(lam, omega.lam)
            if mask_list is None:
                data_tmp = omega.cube_rf[:,:,i_lam]     # Reflectance without mask
            else:
                data_tmp = omega.cube_rf[:,:,i_lam] * mask_list[i]  # Reflectance with mask
            if proj_method == 1:
                data0, mask0 = proj_grid(omega, data_tmp, lat_min, lat_max,
                                        lon_min, lon_max, pas_lat, pas_lon, negative_values)[:2]
            else:
                data0, mask0 = proj_grid2(omega, data_tmp, lat_min, lat_max,
                                         lon_min, lon_max, pas_lat, pas_lon, negative_values)[:2]
            data += np.nan_to_num(data0)    # Conversion NaN -> 0 pour somme des images
            mask += mask0
            mask_obs[mask0 == 1] += (omega.name + ',')
    else:
        check_list_data_omega(omega_list, data_list, disp=True)
        for i, omega in enumerate(tqdm(omega_list)):
            if use_V_geom:
                omega = _switch_default_geom_to_V(omega)
            if use_L_geom:
                omega = _switch_default_geom_to_L(omega)
            if mask_list is None:
                data_tmp = data_list[i]     # Data without mask
            else:
                data_tmp = data_list[i] * mask_list[i]  # Data with mask
            if proj_method == 1:
                data0, mask0 = proj_grid(omega, data_tmp, lat_min, lat_max,
                                        lon_min, lon_max, pas_lat, pas_lon, negative_values)[:2]
            else:
                data0, mask0 = proj_grid2(omega, data_tmp, lat_min, lat_max,
                                         lon_min, lon_max, pas_lat, pas_lon, negative_values)[:2]
            data += np.nan_to_num(data0)    # Conversion NaN -> 0 pour somme des images
            mask += mask0
            mask_obs[mask0 == 1] += (omega.name + ',')
    data[mask == 0] = np.nan
    data2 = data/mask   # Normalisation
    # Affichage figure
    if plot:
        if title == 'auto':
            title = 'Composite map from OMEGA/MEx observations' 
        fig = plt.figure(Nfig)
        Nfig = fig.number   # get the actual figure number if Nfig=None
        if polar:
            ax = plt.axes(polar=True)
            plt.pcolormesh(grid_lon*np.pi/180, grid_lat, data2, cmap=cmap, 
                        vmin=vmin, vmax=vmax, edgecolor=edgecolor, lw=lw, **kwargs)
            ax.set_yticklabels([])  # remove the latitude values in the plot
            plt.xlim(0, 2*np.pi)
            if np.abs(lat_max) >= np.abs(lat_min):
                latlim = (lat_max, lat_min)
            else:
                latlim = (lat_min, lat_max)
            if latlim[0] > 0:   # Northern hemisphere
                ax.set_theta_offset(-np.pi/2)   # longitude origin at the bottom
            else:               # Southern hemisphere
                ax.set_theta_offset(np.pi/2)    # longitude origin at the top
                ax.set_theta_direction(-1)      # clockwise theta
            plt.ylim(latlim)
        else:
            if negatives_longitudes and (lon_max > 180):
                n_neg_lon = np.sum(grid_lon[:,0] > 180) # nb of negative longitudes (>180°)
                i_lon180 = np.where(grid_lon[:,0] > 180)[0][0] # 1st index of lon > 180°
                grid_lon_nl = deepcopy(grid_lon)        # new longitude grid [-180°, 180°]
                grid_lon_nl[:n_neg_lon] = grid_lon[i_lon180-1:-1] - 360
                grid_lon_nl[n_neg_lon:] = grid_lon[:i_lon180]
                data2_nl = deepcopy(data2)      # new data array
                data2_nl[:n_neg_lon] = data2[i_lon180-1:]
                data2_nl[n_neg_lon:] = data2[:i_lon180-1]
                plt.pcolormesh(grid_lon_nl, grid_lat, data2_nl, cmap=cmap, vmin=vmin, 
                               vmax=vmax, edgecolor=edgecolor, lw=lw, **kwargs)
                lon_min, lon_max = grid_lon_nl[[0,-1], 0]   # new longitude bounds
            else:
                plt.pcolormesh(grid_lon, grid_lat, data2, cmap=cmap, vmin=vmin, 
                               vmax=vmax, edgecolor=edgecolor, lw=lw, **kwargs)
            plt.gca().axis('equal')
            plt.gca().set_adjustable('box')
            plt.xlabel('Longitude [°]')
            plt.ylabel('Latitude [°]')
            plt.xlim(lon_min, lon_max)
            plt.ylim(lat_min, lat_max)
        if cbar:
            if cb_title == 'auto':
                cb_title = r'Reflectance @ $\lambda$' + ' = {0:.2f} µm'.format(lam)
            cb = plt.colorbar()
            cb.set_label(cb_title)
        plt.grid(visible=False)
        if grid:
            ax = plt.figure(Nfig).get_axes()[0]
            lonlim = ax.get_xlim()
            latlim = ax.get_ylim()
            lon_sgn = np.sign(lonlim[1] - lonlim[0])
            lat_sgn = np.sign(latlim[1] - latlim[0])
            lon_grid = np.arange(np.round(lonlim[0]/10)*10, np.round(lonlim[1]/10)*10+lon_sgn, 
                        10 * lon_sgn)   # 10° grid in longitude
            lat_grid = np.arange(np.round(latlim[0]/10)*10, np.round(latlim[1]/10)*10+lat_sgn, 
                        10 * lat_sgn)   # 10° grid in latitude
            plt.grid(visible=True)
            if polar:
                ax.set_rticks(lat_grid)
            else:
                ax.set_xticks(lon_grid)
                ax.set_yticks(lat_grid)
        plt.title(title)
        plt.tight_layout()
    # Output
    if out:
        mask2 = np.clip(mask, 0, 1)
        return data2, mask2, grid_lat, grid_lon, mask_obs

omega_plots.show_omega_list_v2_man(data, grid_lat, grid_lon, infos, cmap='Greys_r', vmin=None, vmax=None, title='auto', Nfig=None, polar=False, cbar=True, cb_title='auto', grid=True, negatives_longitudes=False, edgecolor='face', lw=0.1, **kwargs)

Display an composite map from a list OMEGA/MEx observations, previously sampled on a new lat/lon grid with show_omega_list_v2() and saved with save_map_omega_list().

Parameters:

Name Type Description Default
data 2D array

The omega reflectance at lam, sampled on the new lat/lon grid.

required
grid_lat 2D array

The new latitude grid.

required
grid_lon 2D array

The new longitude grid.

required
infos dict

The informations about the computation of the data.

required
cmap str

The matplotlib colormap.

'Greys_r'
vmin float or None

The lower bound of the colorscale.

None
vmax float or None

The upper bound of the colorscale.

None
title str

The title of the figure.

'auto'
Nfig int or str or None

The target figure ID.

None
polar bool

If True → Use a polar projection for the plot.

False
cbar bool

If True → Diplay the colorbar.

True
cb_title str

The title of the colorbar.

'auto'
grid bool

Enable the display of the lat/lon grid.

True
negatives_longitudes bool

Argument for non-polar plots.
| True → longitudes between 0° and 360°.
| False → longitudes between -180° and 180°.

False
edgecolor 'none', None, 'face', color', color sequence

The color of the edges, see documentation of plt.pcolormesh for more details.
Added in version 2.2.8 to fix display due for new version of matplotlib.

Should be set to face if using projection method 1, or none for projection method 2.

'none'
lw float

The line width of the edges (if displayed).

0.1
**kwargs

Optional arguments for the plt.pcolormesh() function.

{}
Source code in omegapy/omega_plots.py
def show_omega_list_v2_man(data, grid_lat, grid_lon, infos, cmap='Greys_r', vmin=None, vmax=None, 
                           title='auto', Nfig=None, polar=False, cbar=True, cb_title='auto',
                           grid=True, negatives_longitudes=False,
                           edgecolor='face', lw=0.1, **kwargs):
    """Display an composite map from a list OMEGA/MEx observations, previously sampled on 
    a new lat/lon grid with `show_omega_list_v2()` and saved with `save_map_omega_list()`.

    Parameters
    ----------
    data : 2D array
        The omega reflectance at lam, sampled on the new lat/lon grid.
    grid_lat : 2D array
        The new latitude grid.
    grid_lon : 2D array
        The new longitude grid.
    infos : dict
        The informations about the computation of the data.
    cmap : str, default 'Greys_r'
        The matplotlib colormap.
    vmin : float or None, default None
        The lower bound of the colorscale.
    vmax : float or None, default None
        The upper bound of the colorscale.
    title : str, default 'auto'
        The title of the figure.
    Nfig : int or str or None, default None
        The target figure ID.
    polar : bool, default False
        If `True` --> Use a polar projection for the plot.
    cbar : bool, default True
        If `True` --> Diplay the colorbar.
    cb_title : str, default 'auto'
        The title of the colorbar.
    grid : bool, default True
        Enable the display of the lat/lon grid.
    negatives_longitudes : bool, default False
        Argument for non-polar plots.</br>
        | `True` --> longitudes between 0° and 360°.</br>
        | `False` --> longitudes between -180° and 180°.
    edgecolor : {'none', None, 'face', color', color sequence}, default 'face'
        The color of the edges, see documentation of plt.pcolormesh for more details.</br>
        *Added in version 2.2.8 to fix display due for new version of matplotlib.*</br>
        > Should be set to `face` if using projection method `1`, 
        or `none` for projection method `2`.
    lw : float, default 0.1
        The line width of the edges (if displayed).
    **kwargs:
        Optional arguments for the `plt.pcolormesh()` function.
    """
    lat_min, lat_max = infos['lat_min'], infos['lat_max']
    lon_min, lon_max = infos['lon_min'], infos['lon_max']
    if title == 'auto':
        title = 'Composite map from OMEGA/MEx observations' 
    fig = plt.figure(Nfig)
    Nfig = fig.number   # get the actual figure number if Nfig=None
    if polar:
        ax = plt.axes(polar=True)
        plt.pcolormesh(grid_lon*np.pi/180, grid_lat, data, cmap=cmap, 
                    vmin=vmin, vmax=vmax, edgecolor=edgecolor, lw=lw, **kwargs)
        ax.set_yticklabels([])  # remove the latitude values in the plot
        plt.xlim(0, 2*np.pi)
        if np.abs(lat_max) >= np.abs(lat_min):
            latlim = (lat_max, lat_min)
        else:
            latlim = (lat_min, lat_max)
        if latlim[0] > 0:   # Northern hemisphere
            ax.set_theta_offset(-np.pi/2)   # longitude origin at the bottom
        else:               # Southern hemisphere
            ax.set_theta_offset(np.pi/2)    # longitude origin at the top
            ax.set_theta_direction(-1)      # clockwise theta
        plt.ylim(latlim)
    else:
        if negatives_longitudes and (lon_max > 180):
            n_neg_lon = np.sum(grid_lon[:,0] > 180) # nb of negative longitudes (>180°)
            i_lon180 = np.where(grid_lon[:,0] > 180)[0][0] # 1st index of lon > 180°
            grid_lon_nl = deepcopy(grid_lon)        # new longitude grid [-180°, 180°]
            grid_lon_nl[:n_neg_lon] = grid_lon[i_lon180-1:-1] - 360
            grid_lon_nl[n_neg_lon:] = grid_lon[:i_lon180]
            data_nl = deepcopy(data)      # new data array
            data_nl[:n_neg_lon] = data[i_lon180-1:]
            data_nl[n_neg_lon:] = data[:i_lon180-1]
            plt.pcolormesh(grid_lon_nl, grid_lat, data_nl, cmap=cmap, vmin=vmin, 
                           vmax=vmax, edgecolor=edgecolor, lw=lw, **kwargs)
            lon_min, lon_max = grid_lon_nl[[0,-1], 0]   # new longitude bounds
        else:
            plt.pcolormesh(grid_lon, grid_lat, data, cmap=cmap, vmin=vmin, 
                           vmax=vmax, edgecolor=edgecolor, lw=lw, **kwargs)
        plt.gca().axis('equal')
        plt.gca().set_adjustable('box')
        plt.xlabel('Longitude [°]')
        plt.ylabel('Latitude [°]')
        plt.xlim(lon_min, lon_max)
        plt.ylim(lat_min, lat_max)
    if cbar:
        if cb_title == 'auto':
            cb_title = infos['data']
        cb = plt.colorbar()
        cb.set_label(cb_title)
    plt.grid(visible=False)
    if grid:
        ax = plt.figure(Nfig).get_axes()[0]
        lonlim = ax.get_xlim()
        latlim = ax.get_ylim()
        lon_sgn = np.sign(lonlim[1] - lonlim[0])
        lat_sgn = np.sign(latlim[1] - latlim[0])
        lon_grid = np.arange(np.round(lonlim[0]/10)*10, np.round(lonlim[1]/10)*10+lon_sgn, 
                    10 * lon_sgn)   # 10° grid in longitude
        lat_grid = np.arange(np.round(latlim[0]/10)*10, np.round(latlim[1]/10)*10+lat_sgn, 
                    10 * lat_sgn)   # 10° grid in latitude
        plt.grid(visible=True)
        if polar:
            ax.set_rticks(lat_grid)
        else:
            ax.set_xticks(lon_grid)
            ax.set_yticks(lat_grid)
    plt.title(title)
    plt.tight_layout()

omega_plots.show_omega_v2(omega, lam, refl=True, lam_unit='m', cmap='Greys_r', vmin=None, vmax=None, alpha=None, title='auto', lonlim=(None, None), latlim=(None, None), Nfig=None, polar=False, cbar=True, grid=True, mask=None, negatives_longitudes='auto', use_V_geom=False, use_L_geom=False, **kwargs)

Display an OMEGA/MEx observation with respect of the lat/lon coordinates of the pixels, and allows to use a polar projection if desired.

Parameters:

Name Type Description Default
omega OMEGAdata

The OMEGA/MEx observation

required
lam float

The selected wavelength.

required
refl bool

| True → The reflectance is displayed.
| False → The radiance is displayed.

True
lam_unit str

The unit of the lam parameter:
| 'm'lam is the wavelength value (in µm).
| else → lam is the index of the wavelength in the omega.lam array (must be int).

'm'
cmap str

The matplotlib colormap.

'Greys_r'
vmin float or None

The lower bound of the colorscale.

None
vmax float or None

The upper bound of the colorscale.

None
alpha float or None

Opacity of the plot, from 0 (transparent) to 1 (opaque).

None
title str

The title of the figure.

'auto'
lonlim tuple of int or None

The longitude bounds of the figure.

(None, None)
latlim tuple of int or None

The latitude bounds of the y-axis of the figure.

(None, None)
Nfig int or str or None

The target figure ID.

None
polar bool

If True → Use a polar projection for the plot.

False
cbar bool

If True → Diplay the colorbar.

True
grid bool

Enable the display of the lat/lon grid.

True
mask 2D array or None

The array that identify the bad/corrupted pixels to remove.
If None, all the pixels are conserved.
| 1 → Good pixel
| NaN → Bad pixel

None
negatives_longitudes str or bool

Argument for non-polar plots.
| True → longitudes between 0° and 360°.
| False → longitudes between -180° and 180°.
| 'auto' → automatic detection of the best case.

'auto'
use_V_geom bool

If True, use the geometry of the V-channel instead of the C-channel.

False
use_L_geom bool

If True, use the geometry of the L-channel instead of the C-channel.

False
**kwargs

Optional arguments for the plt.pcolormesh() function.

{}
Source code in omegapy/omega_plots.py
def show_omega_v2(omega, lam, refl=True, lam_unit='m', cmap='Greys_r', vmin=None, vmax=None,
                  alpha=None, title='auto', lonlim=(None, None), latlim=(None, None), Nfig=None,
                  polar=False, cbar=True, grid=True, mask=None, negatives_longitudes='auto',
                  use_V_geom=False, use_L_geom=False, **kwargs):
    """Display an OMEGA/MEx observation with respect of the lat/lon coordinates of the pixels,
    and allows to use a polar projection if desired.

    Parameters
    ----------
    omega : OMEGAdata
        The OMEGA/MEx observation
    lam : float
        The selected wavelength.
    refl : bool, default True
        | `True` --> The reflectance is displayed.</br>
        | `False` --> The radiance is displayed.
    lam_unit : str, default 'm'
        The unit of the `lam` parameter:</br>
        | `'m'` --> `lam` is the wavelength value (in µm).</br>
        | else --> `lam` is the index of the wavelength in the `omega.lam` array (must be `int`).
    cmap : str, default 'Greys_r'
        The matplotlib colormap.
    vmin : float or None, default None
        The lower bound of the colorscale.
    vmax : float or None, default None
        The upper bound of the colorscale.
    alpha : float or None, default None
        Opacity of the plot, from 0 (transparent) to 1 (opaque).
    title : str, default 'auto'
        The title of the figure.
    lonlim : tuple of int or None, default (None, None)
        The longitude bounds of the figure.
    latlim : tuple of int or None, default (None, None)
        The latitude bounds of the y-axis of the figure.
    Nfig : int or str or None, default None
        The target figure ID.
    polar : bool, default False
        If `True` --> Use a polar projection for the plot.
    cbar : bool, default True
        If `True` --> Diplay the colorbar.
    grid : bool, default True
        Enable the display of the lat/lon grid.
    mask : 2D array or None, default None
        The array that identify the bad/corrupted pixels to remove.</br>
        If None, all the pixels are conserved.</br>
        | `1` --> Good pixel</br>
        | `NaN` --> Bad pixel
    negatives_longitudes : str or bool, default 'auto'
        Argument for non-polar plots.</br>
        | `True` --> longitudes between 0° and 360°.</br>
        | `False` --> longitudes between -180° and 180°.</br>
        | `'auto'` --> automatic detection of the best case.
    use_V_geom : bool, default False
        If `True`, use the geometry of the V-channel instead of the C-channel.
    use_L_geom : bool, default False
        If `True`, use the geometry of the L-channel instead of the C-channel.
    **kwargs:
        Optional arguments for the `plt.pcolormesh()` function.
    """
    if use_V_geom and use_L_geom:
        raise ValueError("Cannot use both V and L geometries at the same time.")
    if use_V_geom:
        omega = _switch_default_geom_to_V(omega)
    if use_L_geom:
        omega = _switch_default_geom_to_L(omega)
    if ((lam_unit == 'm') or isinstance(lam, float)) and (lam < 10):
        i_lam = uf.where_closer(lam, omega.lam)
    else:
        i_lam = deepcopy(lam)
    lam = omega.lam[i_lam]
    if refl:
        cube = deepcopy(omega.cube_rf)
        cb_title = r'Reflectance @ $\lambda$' + ' = {0:.2f} µm'.format(lam)
    else:
        cube = deepcopy(omega.cube_i)
        cb_title = (r'Radiance [W.m$^{-2}$.sr$^{-1}$.µm$^{-1}$] at $\lambda$' + 
                    ' = {0:.2f} µm'.format(lam))
    cube_map = cube[:, :, i_lam]    # extracted map to display
    if not (mask is None):
        cube_map *= mask    # apply mask to remove bad pixels (turned to NaN)
    if title == 'auto':
        title = 'OMEGA/MEx observation {0}'.format(omega.name) 
    if isinstance(negatives_longitudes, str):
        mask_lat = (np.abs(omega.lat) < 85)
        if (omega.lon[mask_lat] < 10).any() and (omega.lon[mask_lat] > 350).any():
            negatives_longitudes = True
    fig = plt.figure(Nfig)
    Nfig = fig.number   # get the actual figure number if Nfig=None
    if len(fig.get_axes()) != 0:    # If presence of axes
        ax0 = fig.get_axes()[0]
        is_ax0_polar = hasattr(ax0, 'set_theta_offset') # Test if ax has polar projection
        if not polar == is_ax0_polar:
            raise ValueError("Can not mix polar and non-polar projections in the same plot")
    if polar:
        if len(fig.get_axes()) == 0:    # Test presence of axes in the figure
            ax = plt.axes(polar=True)
        else:
            ax = fig.get_axes()[0]  # Do not create new axes instance
        plt.pcolormesh(omega.lon_grid*np.pi/180, omega.lat_grid, cube_map, cmap=cmap, 
                       alpha=alpha, vmin=vmin, vmax=vmax, **kwargs)
        ax.set_yticklabels([])  # remove the latitude values in the plot
        if latlim[0] is None:
            if np.max(omega.lat) > 0:
                latlim = (90, np.min(omega.lat_grid)-1)
            else:
                latlim = (-90, np.max(omega.lat_grid)+1)
        if latlim[0] > 0:   # Northern hemisphere
            ax.set_theta_offset(-np.pi/2)   # longitude origin at the bottom
        else:               # Southern hemisphere
            ax.set_theta_offset(np.pi/2)    # longitude origin at the top
            ax.set_theta_direction(-1)      # clockwise theta
        plt.xlim(lonlim)
        plt.ylim(latlim)
    else:
        lon_grid2 = deepcopy(omega.lon_grid)
        if negatives_longitudes:
            lon_grid2[lon_grid2 > 180] -= 360
        plt.pcolormesh(lon_grid2, omega.lat_grid, cube_map, cmap=cmap, alpha=alpha,
                       vmin=vmin, vmax=vmax, **kwargs)
        plt.gca().axis('equal')
        plt.xlim(lonlim)
        plt.ylim(latlim)
        plt.gca().set_adjustable('box')
        plt.xlabel('Longitude [°]')
        plt.ylabel('Latitude [°]')
    if cbar:
        cb = plt.colorbar()
        cb.set_label(cb_title)
    plt.grid(visible=False)
    if grid:
        ax = plt.figure(Nfig).get_axes()[0]
        lonlim = ax.get_xlim()
        latlim = ax.get_ylim()
        lon_sgn = np.sign(lonlim[1] - lonlim[0])
        lat_sgn = np.sign(latlim[1] - latlim[0])
        lon_grid = np.arange(np.round(lonlim[0]/10)*10, np.round(lonlim[1]/10)*10+lon_sgn, 
                    10 * lon_sgn)   # 10° grid in longitude
        lat_grid = np.arange(np.round(latlim[0]/10)*10, np.round(latlim[1]/10)*10+lat_sgn, 
                    10 * lat_sgn)   # 10° grid in latitude
        plt.grid(visible=True)
        if polar:
            ax.set_rticks(lat_grid)
        else:
            ax.set_xticks(lon_grid)
            ax.set_yticks(lat_grid)
    plt.title(title)
    plt.tight_layout()